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ABSTRACT. Four years after a trench was dug through alpine habitat on

Mount Washington, New Hampshire, we surveyed vascular plants, bryophytes,

and lichens in the disturbed area, analyzing species richness and abundance

compared with values in adjacent, undisturbed areas. Plants had begun

recolonizing the disturbed area, but species richness and abundance remained

far lower than in the undisturbed community. Among vascular plants,

graminoids colonized most quickly, and woody species were largely absent.

Species with the highest frequency and greatest abundance in the disturbed area

also were common and abundant in the undisturbed community. Bryophytes

appeared to be colonizing no more quickly than vascular plants. Treeline and

elevation exerted separate effects on community structure and recovery.

Treeline influenced species richness, abundance, and the rate of recovery of

vascular plants, but there was no evidence of an additional effect of elevation

either above or below treeline. Treeline also influenced species richness of

bryophytes and lichens. In addition, elevation appeared to have a separate

effect on their rate of recovery in alpine habitat: species richness of bryophytes

and lichens declined with elevation in the disturbed community but not in the
undisturbed community. This suggests that elevation has a transient effect on

colonization and/or survival, but only above treeline. In general, recovery has

occurred more quickly below treeline. This survey establishes baseline

information that will be useful in assessing the rate of recovery after future

surveys.

Key Words: alpine plants, disturbance recovery, global climate change,

vascular plants, bryophytes, lichens, Presidential Range, White

Mountain National Forest, succession

Many alpine plant communities are resilient in the sense that the

composition of post-disturbance communities can be very similar to

that of the pre-disturbance community (Ebersole 2002; Rydgren et
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al. 2011; Willard and Marr 1971). However, the process of recovery

can take many years (Billings 1973). Researchers observing

recovery after disturbances have reported that some species

colonize quickly, but the abundance of plants often reaches pre-

disturbance levels only after many decades (Brown et al. 2006;

Chambers 1993; Curtin 1995; Lloyd et al. 2003; Willard and Marr

1971). Alpine plant communities recover slowly from disturbance,

in part because of the short growing season and low temperatures

(Chambers 1995; Körner 2003). Cells differentiate and mature more

slowly at the low temperatures found at high elevations, so plants

grow more slowly and take longer to produce flowers, ripen fruit,

and spread vegetatively (Milla et al. 2009). In addition, high

mortality of seedlings due to frost-heaving and drought stress

retards recovery (Chambers 1995; Ebersole 2002; Marchand and

Sproul 1981).

Assemblages of plants growing above treeline vary with

elevation, slope, topography, aspect, soil chemistry, and other

conditions, and include the constituents of sedge meadow, heath,

dwarf shrub, fellfield, snowbank, and other communities. Because

of life history and physiological differences among the plants in

these assemblages, recovery in alpine communities depends in part

on the species occurring in a particular area (Chambers 1995). In

addition, the nature of a disturbance influences recovery, which

occurs more slowly where surface soils have been removed (e.g., by

landslides or mining) than where recreational use or small mammal

burrowing has left the often well-developed soils in place

(Chambers 1995). Because cold and wind become more severe with

increasing elevation, it might also be expected that recovery from

disturbance would vary with elevation above treeline.

Here, we investigate colonization by vascular plants, bryophytes,

and lichens four years after excavation work done on Mount

Washington, New Hampshire. We analyze the effect of treeline and

elevation on numbers of species and plant abundance in the

disturbed area. We also compare species richness and abundance

with values in an adjacent, undisturbed area. The purpose of this

research was to record the process of succession after disturbance in

the alpine habitat, beginning four years after a major disturbance

and continuing with periodic surveys in the future. Although this

research is largely descriptive, we did predict that recovery would

proceed more quickly at lower elevations than near the summit.
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METHODS

At 1914 m, Mount Washington (44u169N, 71u189W) is the highest

mountain in the northeastern US. The area of contiguous alpine

habitat in the Presidential Range of the White Mountain National

Forest (11.3 km2) is larger than on any other mountain range in the

Northeast (Kimball and Weihrauch 2000). The climate in the region

is classified as Dfb (cool-summer, humid continental type) in

the Köppen-Geiger system (Ward et al. 1938), but summits

are classified as ET (tundra climate; Reiners and Lang 1979).

Summertime weather is cloudy, wet, and windy (Babrauckas and

Schmidlin 1997). During the period from 1935 to 2003, the

temperature on the summit ranged from 214.0 6 1.6uC (mean 6

SE) in the winter to 8.3 6 0.8uC in the summer, and temperatures in

Pinkham Notch (the valley to the east of the mountain) ranged

from 28.3 6 1.5uC in the winter to 16.2 6 0.7uC in the summer

(Seidel et al. 2009).

During the summer of 2008, a trench was dug along the Cog

Railway (a rail line built in 1869) from the bottom of Mount

Washington to the summit to permit burial of electric and photo-

optic cables (Figure 1). The 90 cm deep trench was dug with an

excavator that eliminated plants in an area about 5 m wide as it

excavated soil and rocks from the trench, buried the cable, and

finally refilled the trench with the soil and rock it had removed. In

this process, the earth-moving equipment essentially created a crude

road up the mountain, roughly parallel to the rail line and a

minimum of 3–8 m from it. We surveyed along this disturbed area

for a linear distance of 1800 m in July 2012, from an area just north

of the summit (elevation 1853 m) down to an area just above

‘‘Jacob’s Ladder’’ (elevation 1457 m), where continued disturbance

interferes with recovery. The area where the trench was dug had

been somewhat disturbed previously, especially below treeline,

where fires had burned trees along the tracks. Decades of

maintenance and repairs of the Cog Railway had left debris such

as railroad ties beside the rail line, but it was largely confined to the

area immediately beside the track. Any railroad debris extending

into the area of the trench was removed as the trench was dug, and

most of the rest had been removed by 2012. The coal-fired engines

used by the Cog Railway before 2009 (by 2102, biodiesel engines

were used for all but one of the daily trips) also produced cinders

that were evident in the area of the trench and, to a lesser degree, in
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the undisturbed community; the possible effect of the cinders on

the plants is unknown. Digging the trench essentially reset the

community, eliminating plants in the disturbed area and allowing

succession to begin anew. Soil that had developed was not lost, but

it would have been mixed with rock when returned to the trench.

Nor was the seedbank lost, but when the trench was refilled some

seeds likely were buried too deeply to emerge. Four years after

succession began in 2009, we compared species presence and, in

some cases, abundance in the disturbed area with the same

parameters in the undisturbed community nearby (the ‘‘natural’’

community toward which succession would presumably progress).

We sampled at 50 m intervals along two transects, one in the

center of the disturbed area and a second 5–8 m to the north (or to

the south, in a brief stretch where the disturbed area crossed to the

south side of the rail line). Above treeline, there would have been no

edge effect from light in the undisturbed community, but the plants

Figure 1. A backhoe was used in the summer of 2008 to dig a trench on
Mount Washington, just north of the Cog Railway, to bury an electric cable
and a fiber-optic line. The work severely disturbed the plant communities from
the bottom of the mountain to the summit, through the alpine habitat,
removing all plants and much of the organic soil. A survey was done to assess
recovery of the alpine community four years later. (Photo by Kent McFarland)
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we sampled in the undisturbed area below treeline may have received

somewhat more light than plants in areas farther from the disturbance.
Aspect through most of this area is west-northwest, although at the

lowest elevations it tends to the west-southwest. At each sampling

location, we used a 1 m2 quadrat frame to survey the community, and

recorded the presence and abundance (% cover) of all vascular plants

and bryophytes. We also recorded the presence (but not abundance) of

all lichen species and the proportion of bare rock in each plot. We

recorded the latitude, longitude, and elevation of each plot, using a

GPS unit (Garmin GPS Map 60, Olathe, KS). Moving downslope, the
survey passed through several community types (Sperduto and Cogbill

1999), from sedge meadow near the summit, to sedge-rush-heath

meadow, and finally into black spruce-balsam fir krummholz at

treeline. Based on plots in the two transects (N 5 37 plots in each), we

evaluated changes in species richness (number of species per plot) of

vascular plants, bryophytes, and lichens, as well as abundance of

vascular plants and bryophytes along the elevational gradient in the

disturbed area. We then compared the data from the recovering
community and the undisturbed community nearby.

Variation in species richness related to the disturbance and elevation

was evaluated with ANOVAs, t-tests, and linear regressions. Differ-

ences in species richness between disturbed and undisturbed plots were

analyzed with paired t-tests. Total cover in each plot was calculated

as the sum of individual species’ cover values (because species

overlapped, cover totals could exceed 100%). Differences in square-

root-transformed abundance values were analyzed with paired t-tests.
All statistical tests were done in SYSTAT, version 7.0 for Windows

(SPSS, Chicago, IL). We collected specimens of bryophytes and lichens

that could not be identified in the field and identified them later in the

laboratory. These and vouchers for identification of vascular plants,

which had been collected previously in the White Mountains (or in two

cases, on a mountain in western Maine), were deposited in the George

Safford Torrey Herbarium (CONN) at the University of Connecticut.

Nomenclature follows Haines (2011) for vascular plants, and the
PLANTS database (USDA, NRCS 2013) for bryophytes and lichens.

RESULTS

A total of 20 vascular plant species was present in the disturbed

plots, compared with a total of 29 species recorded in undisturbed

plots (Table 1). However, most species in the disturbed transect
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Table 1. The relative frequency of occurrence of species above and below
treeline in undisturbed and disturbed plots (N 5 37 for each) in a survey of alpine
plants on Mount Washington in 2012. The survey was done to assess community
recovery four years after a major disturbance. Transects in the disturbed and
undisturbed (control) communities were run from near the summit, down to an
elevation of about 1450 m (somewhat below treeline). Voucher specimens
(deposited at CONN) are listed below species names, with collection numbers and
unique herbarium accession barcode numbers. Because a number of species
occurred only in plots above treeline (N 5 27) or below treeline (N 5 10),
frequency values for these plots are shown separately. For each plant category
(Vascular plants, Mosses, Liverworts, and Lichens), species are listed in order of
frequency—first in undisturbed areas above treeline, followed by undisturbed
below tree line (for species that do not occur above treeline), etc. 1Frequencies for
Polytrichum and Polytrichastrum species are minimum values; they were not
identified to species in the field, and samples were not taken in every location, so
many were recorded only as ‘‘Polytrichaceae.’’

Species and Collection Information

Relative Frequency of Occurrence
Above and Below Treeline1

Undisturbed Disturbed

Above Below Above Below

VASCULAR PLANTS 0.89 1.00 0.52 0.80

Carex bigelowii Torr. ex Schwein.
(R.S. Capers 2227, CONN00139484)

0.74 – 0.19 –

Minuartia groenlandica (Retz.) Ostenf.
(R.S. Capers 2238, CONN00139473)

0.52 – 0.19 –

Juncus trifidus L.
(R.S. Capers 2234, CONN00139477)

0.41 0.30 0.41 0.70

Vaccinium vitis-idaea L. subsp. minus
(Lodd.) Hultén
(R.S. Capers 2235, CONN00139476)

0.30 0.20 – –

Vaccinium uliginosum L.
(R.S. Capers 2239, CONN00139472)

0.15 0.30 – –

Sibbaldiopsis tridentata (Aiton) Rydb.
(R.S. Capers 2240, CONN00139471)

0.15 0.10 – 0.10

Calamogrostis canadensis (Michx.) P. Beauv.
(R.S. Capers 2185, CONN00140022)

0.11 – – –

Diapensia lapponica L.
(R.S. Capers 2250, CONN00138332)

0.11 – – –

Betula cordifolia Regel
(R.S. Capers 2236, CONN00139475)

0.07 0.40 – 0.20

Agrostis mertensii Trin.
(R.S. Capers 2184, CONN00139730)

0.07 – 0.04 –

Abies balsamea (L.) Mill.
(R.S. Capers 1679, CONN00085644)

0.04 0.90 – 0.20

Rhododendron groenlandicum (Oeder)
Kron & Judd
(R.S. Capers 2405, CONN00155650)

0.04 0.50 – –
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Species and Collection Information

Relative Frequency of Occurrence
Above and Below Treeline1

Undisturbed Disturbed

Above Below Above Below

Chamaepericlymenum canadense (L.)
Asch. & Graebn.
(R.S. Capers 2215, CONN00139710)

0.04 0.40 – 0.10

Gaultheria hispidula (L.) Muhl. ex Bigelow
(RC 2314, CONN00139612)

0.04 0.30 – –

Carex brunescens (Pers.) Poir.
(R.S. Capers 2225, CONN00139714)

0.04 0.20 – 0.40

Huperzia appressa (Desv.) Á. & D. Löve
(R.S. Capers 1687, CONN00085663)

0.04 0.10 – –

Anthoxanthum monticola (Bigelow) Y.
Schouten & Veldkamp
(R.S. Capers 2241, CONN00139470)

0.04 – – 0.60

Luzula spicata (L.) DC.
(R.S. Capers 2246, CONN00164350)

0.04 – – –

Spinulum annotinum (L.) A. Haines
(R.S. Capers 2194, CONN00140030)

– 0.40 – –

Deschampsia flexuosa (L.) Trin.
(R.S. Capers 2288, CONN00143246)

– 0.30 – –

Vaccinium cespitosum Michx.
(R.S. Capers 2436, CONN00164341)

– 0.30 – 0.20

Coptis trifolia (L.) Salisb.
(R.S. Capers 2305, CONN00139446)

– 0.30 – –

Maianthemum canadense Desf.
(R.S. Capers 2278, CONN00141576)

– 0.30 – –

Empetrum nigrum L.
(R.S. Capers 2237, CONN00139474)

– 0.20 – 0.10

Vaccinium angustifolium Aiton
(R.S. Capers 2327, CONN00139598)

– 0.20 – –

Solidago macrophylla Pursh
(R.S. Capers 2232, CONN00139479)

– 0.10 – 0.10

Clintonia borealis (Aiton) Raf.
(R.S. Capers 2219, CONN00139720)

– 0.10 – –

Phegopteris connectilis (Michx.) Watt
(R.S. Capers 2242, CONN00139469)

– 0.10 – –

Sorbus decora (Sarg.) C.K. Schneid.
(R.S. Capers 2221, CONN00139718)

– 0.10 – –

Picea sp. – – 0.04 –
Carex debilis Michx.

(R.S. Capers 2438, CONN00164343)
– – – 0.10

Festuca filiformis Pourr.
(R.S. Capers 2462, CONN00166686)

– – – 0.10

Table 1. Continued.
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Table 1. Continued.

Species and Collection Information

Relative Frequency of Occurrence
Above and Below Treeline1

Undisturbed Disturbed

Above Below Above Below

Festuca ovina L.
(R.S. Capers 2461, CONN00166687)

– – – 0.10

Grass No. 7 – – – 0.10
Lysimachia borealis (Raf.) U. Manns &

Anderb.
(R.S. Capers 2213, CONN00140041)

– – – 0.10

Oclemena acuminata (Michx.) Nesom
(R.S. Capers 2460, CONN00166675)

– – – 0.10

MOSSES 0.96 1.00 0.41 0.80

Polytrichaceae spp. 0.89 0.70 0.26 0.60

Polytrichum piliferum Hedw.
(R.S. Capers & D.W. Taylor 102,

CONN00132955)

0.26 0.20 0.19 0.20

Polytrichum juniperinum Hedw.
(R.S. Capers & D.W. Taylor 104,

CONN00132943)

0.11 – 0.04 –

Polytrichum commune Hedw.
(R.S. Capers & D.W. Taylor 103,

CONN00132951)

0.04 0.30 0.07 0.50

Polytrichastrum alpinum (Hedw.) G.L.
Sm. var. alpinum
(R.S. Capers & D.W. Taylor 101,

CONN00132953)

– 0.30 – –

Other mosses

Andreaea rupestris Hedw.
(R.S. Capers & D.W. Taylor 111,

CONN00132944)

0.44 0.30 0.15 0.20

Pogonatum dentatum (Brid.) Brid.
(R.S. Capers & D.W. Taylor 113,

CONN00132942)

0.26 0.10 0.15 0.50

Dicranum montanum Hedw.
(R.S. Capers & D.W. Taylor 105,

CONN00132952)

0.15 0.30 – –

Dicranum fuscescens Turner
(R.S. Capers & D.W. Taylor 106,

CONN00132957)

0.07 0.60 – –
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Table 1. Continued.

Species and Collection Information

Relative Frequency of Occurrence
Above and Below Treeline1

Undisturbed Disturbed

Above Below Above Below

Pleurozium schreberi (Brid.) Mitt.
(R.S. Capers & D.W. Taylor 107,

CONN00132958)

0.04 0.50 – –

Pohlia nutans (Hedw.) Lindb.
(R.S. Capers & D.W. Taylor 108,

CONN00132954)

0.04 0.40 – 0.30

Grimmia donniana Sm.
(R.S. Capers & D.W. Taylor 110,

CONN00132945)

0.04 – – –

Andreaea rothii Weber & D. Mohr
(R.S. Capers & D.W. Taylor 112,

CONN00132950)

– 0.20 – –

Brotherella recurvans (Michx.) Fleisch.
(R.S. Capers & D.W. Taylor 114,

CONN00132962)

– 0.20 – –

Dicranum scoparium Hedw.
(R.S. Capers & D.W. Taylor 109,

CONN00132959)

– 0.20 – –

Dicranum elongatum Schleich ex Schwaegr. – 0.10 – –

LIVERWORTS 0.04 0.60 – –

Gymnomitrion concinnatum (Lightf.) Corda
(R.S. Capers & D.W. Taylor 116,

CONN00132946)

0.04 – – –

Ptilidium ciliare (L.) Hampe
(R.S. Capers & D.W. Taylor 117,

CONN00132947)

– 0.50 – –

Barbilophozia floerkei (F. Weber & D.
Mohr) Loeske
(R.S. Capers & D.W. Taylor 119,

CONN00132961)

– 0.20 – –

Cephalozia bicuspidata (L.) Dumort.
(R.S. Capers & D.W. Taylor 118,

CONN00132960)

– 0.10 – –

Lophocolea heterophylla (Schrad.) Dumort.
(R.S. Capers & D.W. Taylor 115,

CONN00132956)

– 0.10 – –

Ptilidium pulcherrrimum (Weber) Vain.
(R.S. Capers & D.W. Taylor 122,

CONN00132965)

– 0.10 – –
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occurred only below 1600 m, where krummholz became common

and below which the cover of stunted trees was nearly continuous.

Only five species established in disturbed plots in the alpine habitat

above treeline (compared with 15 extant in the undisturbed plots),

two of which were found only once. Among these, only Juncus

trifidus occurred with higher relative frequency (the proportion of

all plots in which a species or functional group occurred) in

disturbed than undisturbed plots. In disturbed plots, plants became

increasingly sparse with higher elevation, and five of the 10 highest

elevation plots in the disturbed transect had no vascular plants at

all (compared with one of 10 in the undisturbed transect). Even

where plants had colonized, abundance was low (Table 2;

Figure 2). With the exception of a single spruce (Picea sp.) seedling,

the plants colonizing above treeline in the disturbed area were also

members of the undisturbed community. Three of the four species

most frequently found in disturbed plots (Carex bigelowii, J.

trifidus, and Minuartia groenlandica) were also among the four most

frequently found species in the undisturbed community.

Species and Collection Information

Relative Frequency of Occurrence
Above and Below Treeline1

Undisturbed Disturbed

Above Below Above Below

LICHENS 0.85 0.60 0.19 0.10

Rhizocarpon geographicum (L.) DC. 0.74 0.40 0.19 0.10

Umbilicaria sp. 0.59 0.20 0.07 0.10

Arctoparmelia centrifuga (L.) Hale 0.41 – 0.11 –

Aspicilia sp. 0.33 0.20 0.15 –

Cetraria laevigata Rass.
(R.S. Capers & D.W. Taylor 121,

CONN00132948)

0.22 0.50 – –

Stereocaulon sp. 0.15 0.30 0.07 0.10

Cladonia cervicornis (Ach.) Flotow subsp.
verticillata (Hoffm.) Ahti – 0.20 – –

Cladonia gracilis (L.) Willd. subsp. gracilis
(R.S. Capers & D.W. Taylor 120,

CONN00132949) – 0.20 – –

Cladonia chlorophaea (Flörke ex
Sommerf.) Spreng. – 0.10 – –

Table 1. Continued.
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Six bryophyte species (all mosses, including three in the

Polytrichaceae) colonized the disturbed transect (five above tree-

line), compared with 21 (15 mosses and six liverworts) extant in the

undisturbed transect. Five lichens were recorded in the disturbed

transect (compared with nine extant in the undisturbed communi-

ty), all above treeline. However, four of these occurred only on

rock, and it was impossible to determine if these species colonized

after the disturbance or were moved into the area on rocks as the

excavation work ended and the area was regraded.

Species richness of vascular plants in disturbed plots was 1.5 6

0.34 (mean 6 SE), compared with 3.8 6 0.40 in undisturbed plots (t

5 25.72, p , 0.0001). Abundance of vascular plants also was lower

in disturbed plots (Figure 2; 2.5% cover vs. 64.7% overall; t 5 10.5,

p , 0.0001 with square-root transformed data). We identified four

species of Polytrichum or Polytrichastrum moss but we were unable

to distinguish these from each other with certainty in the field and

did not collect a specimen of each from every site where it was

recorded. Thus, we combined them as Polytrichaceae spp. in

analyses of species richness, resulting in lower estimates than actually

occurred. Richness of both bryophytes and lichens was lower in the

disturbed plots than in the undisturbed plots (bryophytes: 0.84 6

0.157 vs. 2.65 6 0.246, t 5 27.50, p , 0.0001; lichens: 0.51 6 0.211

vs. 2.38 6 0.286, t 5 25.51, p , 0.0001). Mean cover of bryophytes

overall was 5.1% 6 1.71 in disturbed plots compared with 26.0% 6

3.65 in undisturbed plots (t 5 27.37, p , 0.0001). Relative frequency

Figure 2. A quadrat (1 meter square) sample in the disturbed alpine
community, left, compared with the alpine community in the undisturbed
community at the same elevation (1837 m) near the summit of Mount
Washington, right. In 2012, four years after a disturbance in the alpine habitat,
plants had begun to recolonize, but abundance was far lower than in the
undisturbed area.
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values for most species of bryophytes and lichens also were lower in

the disturbed transect than in the undisturbed community (Table 1).
Polytrichaceae species and Pogonatum dentatum were the bryophytes

that most frequently colonized the disturbed areas. Five lichens were

recorded in the disturbed transect, but only one was a soil-dwelling

lichen—a species of Stereocaulon that colonized three locations,

including two above treeline.

Elevation over the entire distance sampled had a significant

negative effect on species richness and abundance of vascular plants

and bryophytes. However, when above-treeline and below-treeline
plots were analyzed separately, the effect of elevation disappeared

or was limited to the alpine area above treeline. Among vascular

plants, for instance, linear regression indicated that elevation and

disturbance (the latter entered as a categorical variable) each had a

highly significant influence on species richness (F 5 26.04 for

elevation, and F 5 24.32 for disturbance, p , 0.0001 in both cases),

explaining 41% of variation. However, elevation was no longer

significant when treeline was entered into the regression, and the
best-fit model included only treeline and disturbance (F 5 26.23 for

disturbance, and F 5 33.66 for treeline, p , 0.0001 in both cases;

R2 5 0.458). When above-treeline and below-treeline species

richness were analyzed separately, species richness was lower in

disturbed plots than undisturbed plots, both above and below

treeline (Table 2), but elevation was not significant in either the

disturbed or undisturbed community (below treeline: F 5 0, p 5

0.99 for disturbed plots, and F 5 0.418, p 5 0.5363 for undisturbed
plots; above treeline: F 5 0.738, p 5 0.3984 for disturbed plots, and

F 5 0.665, p 5 0.4224 for undisturbed plots; Figure 3). As a result,

separate analyses were conducted for above-treeline (N 5 27) and

below-treeline (N 5 10) plots.

Similarly, abundance of vascular plants was significantly

influenced by both elevation and disturbance when they were

entered in a regression together (F 5 87.03, p , 0.0001 for

disturbance, and F 5 4.88, p 5 0.0304 for elevation; R2 5 0.564)
but, when treeline was entered into the regression, elevation no

longer was significant and the best-fit regression model included

only treeline and disturbance (F 5 14.84, p 5 0.0003 for treeline,

and F 5 98.50, p , 0.0001 for disturbance; R2 5 0.615).

Abundance of vascular plants was lower in disturbed plots than

undisturbed plots both above and below treeline (Table 2), but

elevation did not influence abundance within either area (below
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treeline: F 5 0.0037, p 5 0.95 for disturbed plots, and F 5 0.7756, p

5 0.40 for undisturbed plots; above treeline: F 5 0.8353, p 5 0.37

for disturbed plots, and F 5 2.8874, p 5 0.10 for undisturbed

plots). Above treeline, no vascular plant species in disturbed plots
had cover in excess of 1%, compared with a maximum of 100%

cover in the undisturbed plots. Below treeline, total cover of

vascular plants exceeded 20% only in one disturbed plot, where

eight species had established, whereas cover exceeded 100% in

several undisturbed plots. Although the frequency of vascular

plants in general was low in the disturbed area above treeline, it was

especially low for woody species, which occurred in only 3.7% of

plots, compared with the undisturbed transect, where woody species
appeared in 37% of plots.

When all samples were considered, bryophyte richness declined

with elevation in both disturbed and undisturbed transects (F 5

18.92, p 5 0.0001, and F 5 31.21, p , 0.0001, respectively),

whereas lichen richness was uncorrelated with elevation (F 5 0.36,

p 5 0.5506 for disturbed transects, and F 5 0.04, p 5 0.8431 for

undisturbed transects). For both bryophytes and lichens (Figure 4),

Figure 3. The species richness of vascular plants in disturbed quadrats
(closed symbols) is compared with richness in undisturbed quadrats (open
symbols) in high-elevation habitat on Mount Washington. Species richness
declined with elevation in both disturbed and undisturbed communities.
However, the effect of elevation disappeared when treeline, which occurs at
about 1600 m in this area, was taken into account. In both disturbed and
undisturbed communities, declines in richness with elevation were not
significant in linear regressions when above-treeline quadrats (squares) and
below-treeline quadrats (circles) were analyzed separately.
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Figure 4. Species richness of lichens was unrelated to elevation and bryophyte
richness declined with elevation in both disturbed and undisturbed communities,
but the effect was greatly reduced when treeline was taken into account and
subcommunities were analyzed separately. In the undisturbed communities (open
symbols) of bryophytes (A) and lichens (B) above treeline (open squares), species
richness was not influenced by elevation. However, species richness declined above
treeline in both disturbed communities (closed squares and solid lines), suggesting
that rates of colonization and/or survival decline with elevation in the alpine
habitat. For bryophytes, S 5 20.0065*Elevation + 11.83, p 5 0.002, adjusted R2 5

0.419; for lichens, S 5 20.007*Elevation + 13.30, p 5 0.037, adjusted R2 5 0.129.
Lichen richness below treeline also increased with elevation in the undisturbed
community (open circles and broken line), probably because light availability
increases in the understory closer to treeline: S 5 0.034*Elevation + 50.13, p 5

0.018, adjusted R2 5 0.462.
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richness declined with elevation above treeline in the disturbed

community (bryophytes: F 5 18.26, p 5 0.0003; lichens: F 5 4.85,
p 5 0.0370) but not in the undisturbed community (bryophytes:

F 5 0.11, p 5 0.7470; lichens: F 5 2.79, p 5 0.1074). Below

treeline, elevation was uncorrelated with bryophyte richness in both

disturbed and undisturbed communities (F 5 1.54, p 5 0.2548, and

F 5 0.75, p 5 0.4166, respectively). Lichen richness was

uncorrelated with elevation below treeline in the disturbed

community as well (F 5 0.95, p 5 0.3589), but increased with

elevation in the undisturbed community (F 5 8.72, p 5 0.0183).
Abundance of bryophytes was lower in the disturbed plots,

especially above treeline, where no species achieved more than 5%

cover. Below treeline, bryophyte cover exceeded 25% in three of 10

plots in the disturbed area, compared to seven of 10 undisturbed

plots, where cover reached a maximum of 80% cover. However,

below treeline, mean abundance of bryophytes in the disturbed area

did not differ significantly from abundance in the undisturbed

community (Table 2). Bryophyte abundance (square-root-trans-
formed) declined with elevation in both disturbed and undisturbed

transects above treeline (F 5 23.5184, p 5 0.0001 for disturbed

plots, and F 5 5.1816, p 5 0.0317 for undisturbed plots) but not in

either transect below treeline (F 5 4.0577, p 5 0.0787 for disturbed

plots, and F 5 0.0440, p 5 0.8392 for undisturbed plots).

DISCUSSION

Four years after a major disturbance, recovery of the alpine plant

community had barely begun. Twenty species of vascular plants

had colonized in the disturbed area (Table 1), but only five of them

occurred in the alpine area above treeline. No vascular plant species

had cover greater than 1% in any disturbed plot above treeline,

whereas recovery at lower elevations was more advanced. Mosses

also had begun colonizing the disturbed area, but fewer than half of

the species occurring in the undisturbed community were found in
the disturbed area. Moss abundance remained low in the disturbed

area of alpine habitat, but mosses had increased in abundance more

quickly in the disturbed area below treeline than had vascular

plants. Six liverwort species were collected in the undisturbed

community, but none had recolonized the disturbed area. Among

lichens, five of the nine species occurring in the undisturbed

community were recorded in the disturbed area. Mean species
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richness was significantly lower in the disturbed plots for all groups

(Table 2).
Several studies have shown that, even where alpine plants

recolonize soon after a disturbance, vascular plant abundance can

remain low for decades to centuries (Ebersole 2002; Rydgren et al.

2011; Sklenář et al. 2010). Total cover of vascular plants in a

Montana borrow pit was 25% after 35 years (Chambers 1993).

Likewise, 475 years following an eruption of a volcano in Ecuador,

plant cover was only 69% (Sklenář et al 2010). However, one study

has documented more rapid recovery. Chacón and Cavieres (2008)
found total cover of 28% on a south-facing slope and 24% on a

northwest-facing slope (compared with 52% and 61%, respectively,

in the undisturbed communities) two years after organic soil and

vegetation were removed by bulldozers during dam construction in

Chilean alpine habitat. Most recovery was apparently due to a

persistent seedbank that existed below the organic soil that had

been removed (Chacón and Cavieres 2008).

The rate of recovery in alpine habitat depends to a large degree
on the severity and duration of disturbance. Willard and Marr

(1971) found that lichens in a fellfield could recover to nearly a

natural state after only two years if they had been trampled for only

one year. On the other hand, a sedge meadow they studied would

need more than 100 years to fully recover from 26 years of

trampling (Willard and Marr 1971; Willard et al. 2007). The sedge

meadow had strong turf that was resistant to disturbance, but once

the turf was broken the soil was vulnerable to erosion that left only
coarse gravel, where recovery proceeded slowly. A previous study

of alpine recovery in the White Mountains found that plants had re-

established 12 years after scree walls were built to reduce trampling

by hikers, but cover had increased only from 6% to 26% (Doucette

and Kimball 1990). The disturbance in the area we studied was

more severe, involving the removal of soil, disruption of the

seedbank, and trampling by backhoes, not boots, so recovery might

be expected to take longer there.
It is difficult to know on the basis of a single year’s survey how

the recovery rate on Mount Washington will compare with that in

other areas. Our study was located on the northwest side of the

mountain where prevailing winds are most severe, which may retard

recovery by preventing seed germination or reducing seedling

survival. Soil in the disturbed area is rocky and the organic soil has

been largely removed, which leaves a nutrient-poor substrate in
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which newly arrived seeds must establish (Chambers 1995). The

nature of disturbance events also interacts with seed morphology
and life history traits to influence community composition; small

seeds are trapped more easily in fine-grained soils, whereas only

coarse soils can effectively trap large seeds (Chambers 1995). Soil

texture and organic content also affect temperature and water-

holding ability and, thus, influence seedling survival (Chambers

1995; Ebersole 2002). Many alpine plants produce abundant seeds,

but germination often is limited by conditions in the soil (Chacón

and Cavieres 2008; Chambers et al. 1990), and survival of seedlings
in disturbed areas often is low (Chacón and Cavieres 2008;

Chambers 1995; Roach and Marchand 1984), largely as a result

of frost-heaving or drought stress (Forbis 2003). In general, seedling

survival has been found to be more limiting than seed availability

for disturbance recovery in alpine plant communities (Chambers

1993, 1995; Ebersole 2002).

Vascular plant colonization in the disturbed area of Mount

Washington appears to result from seedling establishment, either
from seeds produced nearby or from the seedbank. We looked for

evidence that plants were expanding vegetatively into the disturbed

area, and we did see occasional evidence of this along the sides of

the disturbance, but these plants did not extend into the center of

the disturbance where the sampling was done. Vegetative coloni-

zation appeared to be related to collapse of small embankments,

which permits chunks of turf to slip into the lower, disturbed area.

We also noted that, in a few areas, turf had been thrown into the
disturbed area by railway workers doing maintenance along the

Cog Railway (none occurred in the plots), although the long-term

viability of these plants is questionable.

In general, the species colonizing the disturbed area were those

that were among the most frequent and abundant in the

undisturbed community. The three most successful colonizing

angiosperms in the alpine area were all herbaceous (Carex bigelowii,

Juncus trifidus, and Minuartia groenlandica), and all were common
in the high alpine areas of the Presidential Range (Antevs 1932;

Bliss 1963). Juncus and Minuartia are part of an early successional

community often found along trails and in other disturbed areas

(Marchand and Roach 1980; Sardinero 2000). Graminoids such as

J. trifidus and C. bigelowii, which have abundant small seeds, often

dominate alpine communities after disturbance, although clonal

plants with fewer but larger seeds frequently come to dominate

18 Rhodora [Vol. 116



later in succession as communities become more similar to their

undisturbed counterparts (Chambers 1993; Roxburgh et al. 1988).
Only one woody species (a single spruce seedling) had colonized in

the disturbed plots above treeline. Among the woody species that

were conspicuous by their absence from disturbed plots were

Vaccinium vitis-idaea subsp. minus and V. uliginosum, which are

frequent and often abundant in alpine areas of the Presidential

Range. These species were present in 26% and 15%, respectively, of

our above-treeline undisturbed plots. Rydgren et al. (2011) found

the same two species rare in, or absent from, communities
establishing on five alpine spoil heaps in Norway more than

20 years after abandonment, although both species were common in

the surrounding communities. The absence of these shrubs from

disturbed areas is likely the result of seed limitation, which also has

been found to limit alpine colonization by Vaccinium myrtillus

(Lindgren et al. 2007).

Among bryophytes, Polytrichum piliferum, P. commune, and

Pogonatum dentatum have most readily colonized the disturbed
plots above treeline, though abundance values for all remained

lower than in the undisturbed community. Few alpine disturbance

recovery studies have included bryophytes and lichens, but they

often indicate that these groups recover more quickly than vascular

plants. Rydgren et al. (2011) found little recovery of bryophytes and

lichens six to 20 years after disturbance, but species richness and

cover had returned to levels comparable to those of the surrounding

communities after 30 years. On the other hand, Ebersole (2002)
found that lichen cover generally remained lower in disturbed than

in control plots after 30 years. We found no evidence that

bryophytes have colonized any more quickly than vascular plants

above treeline on Mount Washington. Future research is needed to

establish the course of lichen recovery.

We had expected that elevation would affect the rate of recovery

and, overall, species richness and abundance did decline with

elevation. However, among vascular plants, these declines appear to
be the effect of treeline, not elevation itself. We found no evidence

that elevation had an additional effect on richness or abundance

either above or below treeline. We suspect that the protective cover

of trees, even where stunted in the krummholz, provides a more

benign environment for seedling establishment and survival,

producing greater abundance and species richness below treeline.

Despite not affecting vascular plant colonization, elevation did
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affect bryophytes and lichens, but only above treeline. Species

richness of both bryophytes and lichens declined with elevation in
the disturbed community above treeline but not in the undisturbed

community (Figure 4). These results suggest that there is a

transient effect of elevation—disappearing in mature communi-

ties—in which moss and lichen colonization and/or survival rates

in alpine habitat decline with elevation. An increase in lichen

richness with elevation in the undisturbed community below

treeline is likely an effect of increasing light availability in the

understory closer to treeline.
In retrospect, it does not seem surprising that treeline influences

vascular plants’ occurrence more than elevation does. Treeline itself

is influenced by elevation but varies greatly—by nearly 600 m in the

Presidential Range (Kimball and Weihrauch 2000)—depending

primarily on aspect, which determines exposure to the prevailing

northwest winds. Winter winds blow snow off the northwest slope

of Mount Washington where we conducted our survey (most is

deposited in the Alpine Garden and deep ravines east of the
summit), leaving plants exposed and unprotected from desiccation

and blowing ice, which can erode stem and bud tissue (Harries

1966). Loss of snow cover also can increase soil disturbance as a

result of freeze-thaw cycles (Kimball and Weihrauch 2000; Roach

and Marchand 1984). Ultimately, these and other abiotic and biotic

conditions are what regulate the occurrence of plants, not elevation

or treeline (Billings 1974; Billings and Mooney 1968). These

conditions interact with each other and affect individual species
in ways that are often inferred but are poorly characterized

quantitatively. Differences among species’ affinities and tolerances

produce the distinctive alpine communities, with, for instance,

sedge meadows in high-elevation areas on west- or north-facing

slopes, and with forb communities dominating wet sites such as

snowbanks (Antevs 1932; Sperduto and Kimball 2011). Experi-

mental manipulations would be needed to determine how specific

environmental conditions affect colonization and survival of the
community we studied.

In the absence of disturbance, alpine communities would be

expected to change little over time, and previous studies have

assumed that disturbed alpine communities would return eventually

to the pre-disturbance condition (Lloyd et al. 2003; Rydgren et al.

2011). However, alpine communities are sensitive to changes in

warming, precipitation amount and timing, and nitrogen deposi-
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tion, and all of these conditions are now changing in northeastern

North America (Galloway et al. 1984; Keim et al. 2003; Trombulak

and Wolfson 2004). Under such conditions, disturbance can trigger

state changes, in which communities switch quickly from one stable

state to a different one (Post et al. 2009; Scheffer et al. 2001). It will

be especially important to follow the course of succession in the

disturbed area of Mount Washington as a way of assessing whether
more widespread changes in alpine community composition should

be anticipated with changing environmental conditions. Any such

changes are likely to first become apparent where disturbance

allows succession to begin again, and future researchers should be

alert for evidence of such fundamental shifts in community

composition.
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